6 research outputs found

    Stable Motion Primitives via Imitation and Contrastive Learning

    Full text link
    Learning from humans allows non-experts to program robots with ease, lowering the resources required to build complex robotic solutions. Nevertheless, such data-driven approaches often lack the ability to provide guarantees regarding their learned behaviors, which is critical for avoiding failures and/or accidents. In this work, we focus on reaching/point-to-point motions, where robots must always reach their goal, independently of their initial state. This can be achieved by modeling motions as dynamical systems and ensuring that they are globally asymptotically stable. Hence, we introduce a novel Contrastive Learning loss for training Deep Neural Networks (DNN) that, when used together with an Imitation Learning loss, enforces the aforementioned stability in the learned motions. Differently from previous work, our method does not restrict the structure of its function approximator, enabling its use with arbitrary DNNs and allowing it to learn complex motions with high accuracy. We validate it using datasets and a real robot. In the former case, motions are 2 and 4 dimensional, modeled as first- and second-order dynamical systems. In the latter, motions are 3, 4, and 6 dimensional, of first and second order, and are used to control a 7DoF robot manipulator in its end effector space and joint space. More details regarding the real-world experiments are presented in: \url{https://youtu.be/OM-2edHBRfc}

    Deep Metric Imitation Learning for Stable Motion Primitives

    Full text link
    Imitation Learning (IL) is a powerful technique for intuitive robotic programming. However, ensuring the reliability of learned behaviors remains a challenge. In the context of reaching motions, a robot should consistently reach its goal, regardless of its initial conditions. To meet this requirement, IL methods often employ specialized function approximators that guarantee this property by construction. Although effective, these approaches come with a set of limitations: 1) they are unable to fully exploit the capabilities of modern Deep Neural Network (DNN) architectures, 2) some are restricted in the family of motions they can model, resulting in suboptimal IL capabilities, and 3) they require explicit extensions to account for the geometry of motions that consider orientations. To address these challenges, we introduce a novel stability loss function, drawing inspiration from the triplet loss used in the deep metric learning literature. This loss does not constrain the DNN's architecture and enables learning policies that yield accurate results. Furthermore, it is easily adaptable to the geometry of the robot's state space. We provide a proof of the stability properties induced by this loss and empirically validate our method in various settings. These settings include Euclidean and non-Euclidean state spaces, as well as first-order and second-order motions, both in simulation and with real robots. More details about the experimental results can be found at: https://youtu.be/ZWKLGntCI6w.Comment: 21 pages, 15 figures, 4 table

    Interactive Imitation Learning in Robotics: A Survey

    Full text link
    Interactive Imitation Learning (IIL) is a branch of Imitation Learning (IL) where human feedback is provided intermittently during robot execution allowing an online improvement of the robot's behavior. In recent years, IIL has increasingly started to carve out its own space as a promising data-driven alternative for solving complex robotic tasks. The advantages of IIL are its data-efficient, as the human feedback guides the robot directly towards an improved behavior, and its robustness, as the distribution mismatch between the teacher and learner trajectories is minimized by providing feedback directly over the learner's trajectories. Nevertheless, despite the opportunities that IIL presents, its terminology, structure, and applicability are not clear nor unified in the literature, slowing down its development and, therefore, the research of innovative formulations and discoveries. In this article, we attempt to facilitate research in IIL and lower entry barriers for new practitioners by providing a survey of the field that unifies and structures it. In addition, we aim to raise awareness of its potential, what has been accomplished and what are still open research questions. We organize the most relevant works in IIL in terms of human-robot interaction (i.e., types of feedback), interfaces (i.e., means of providing feedback), learning (i.e., models learned from feedback and function approximators), user experience (i.e., human perception about the learning process), applications, and benchmarks. Furthermore, we analyze similarities and differences between IIL and RL, providing a discussion on how the concepts offline, online, off-policy and on-policy learning should be transferred to IIL from the RL literature. We particularly focus on robotic applications in the real world and discuss their implications, limitations, and promising future areas of research

    Interactive learning with corrective feedback for continuous-action policies based on deep neural networks

    No full text
    Tesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención EléctricaMemoria para optar al título de Ingeniero Civil EléctricoEl Aprendizaje Reforzado Profundo (DRL) se ha transformado en una metodología poderosa para resolver problemas complejos de toma de decisión secuencial. Sin embargo, el DRL tiene varias limitaciones cuando es usado en problemas del mundo real (p.ej. aplicaciones de robótica). Por ejemplo, largos tiempos de entrenamiento (que no se pueden acelerar) son requeridos, en contraste con ambientes simulados, y las funciones de recompensa pueden ser difíciles de especificar/modelar y/o computar. Más aún, el traspaso de políticas aprendidas en simulaciones al mundo real no es directo (\emph{reality gap}). Por otro lado, métodos de aprendizaje de máquinas basados en la transferencia de conocimiento humano a un agente han mostrado ser capaces de obtener políticas con buenos desempeños sin necesariamente requerir el uso de una función de recompensa, siendo eficientes en lo que respecta al tiempo. En este contexto, en esta tesis se introduce una estrategia de Aprendizaje Interactivo de Máquinas (IML) para entrenar políticas modeladas como Redes Neuronales Profundas (DNNs), basada en retroalimentación correctiva humana con un método llamado D-COACH. Se combina Aprendizaje Profundo (DL) con el método Asesoramiento Correctivo Comunicado por Humanos (COACH), en donde humanos no expertos pueden entrenar políticas corrigiendo las acciones que va tomando el agente en ejecución. El método D-COACH tiene el potencial de resolver problemas complejos sin la necesidad de utilizar muchos datos o tiempo. Resultados experimentales validan la eficiencia del método propuesto en plataformas simuladas y del mundo real, en espacios de estados de baja y alta dimensionalidad, mostrando la capacidad de aprender políticas en espacios de acción continuos de manera efectiva. El método propuesto mostró resultados particularmente interesantes cuando políticas parametrizadas con Redes Neuronales Convolucionales (CNNs) fueron usadas para resolver problemas con espacios de estado de alta dimensionalidad, como pixeles desde una imagen. Al usar CNNs, los agentes tienen la capacidad de construir valiosas representaciones del estado del ambiente sin la necesidad de hacer ingeniería de características por el lado del diseñador (lo que era siempre necesario en el Aprendizaje Reforzado (RL) clásico). Estas propiedades pueden ser muy útiles en robótica, ya que es común encontrar aplicaciones en donde la información adquirida por los sensores del sistema es de alta dimensionalidad, como imágenes RGB. Darles la habilidad a los robots de aprender desde datos del alta dimensionalidad va a permitir aumentar la complejidad de los problemas que estos pueden resolver. A lo largo de esta tesis se proponen y validan tres variaciones de D-COACH. La primera introduce una estructura general para resolver problemas de estado de baja y alta dimensionalidad. La segunda propone una variación del primer método propuesto para problemas de estado de alta dimensionalidad, reduciendo el tiempo y esfuerzo de un humano al entrenar una política. Y por último, la tercera introduce el uso de Redes Neuronales Recurrentes para añadirle memoria a los agentes en problemas con observabilidad parcial.FONDECYT 116150

    Interactive learning of temporal features for control. Shaping Policies and state representations from human feedback

    No full text
    Current ongoing industry revolution demands more flexible products, including robots in household environments and medium-scale factories. Such robots should be able to adapt to new conditions and environments and be programmed with ease. As an example, let us suppose that there are robot manipulators working on an industrial production line and that they need to perform a new task. If these robots were hard coded, it could take days to adapt them to the new settings, which would stop production at the factory. Robots that non-expert humans could easily program would speed up the process considerably.Netherlands Organization for Scientific Research project Cognitive Robots for Flexible Agro-Food Technology P17-01 European Research Council (ERC) 804907 Chile's National Fund for Scientific and Technological Development project (FONDECYT) 1201170 Chile's Associative Research Program of the National Research and Development Agency (ANID/PIA) AFB18000
    corecore